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ABSTRACT: While storm identification and tracking algorithms are used both operationally and

in research, there exists no single standard technique to objectively determine performance of such

algorithms. Thus, a comparative skill score is developed herein which consists of four parameters,

three of which constitute the quantification of storm attributes — size consistency, linearity of

tracks, and mean track duration — and the fourth which correlates performance to an optimal

post-event reanalysis. The skill score is a cumulative sum of each of the parameters normalized

from zero to one amongst the compared algorithms, such that a maximum skill score of four can

be obtained. The skill score is intended to favor algorithms which are efficient at severe storm

detection, i.e., high-scoring algorithms should detect storms that have higher current or future

severe threat and minimize detection of weaker, short-lived storms with low severe potential. The

skill score is shown to be capable of successfully ranking a large number of algorithms, both

between varying settings within the same base algorithm and between distinct base algorithms.

Through a comparison with manually-created user datasets, high-scoring algorithms are verified

to match well with hand analyses, demonstrating appropriate calibration of skill score parameters.
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SIGNIFICANCE STATEMENT: With the growing number of options for storm identification

and tracking techniques, it is necessary to devise an objective approach to quantify performance

of different techniques. This study introduces a comparative skill score which assesses size

consistency, linearity of tracks, mean track duration, and correlation to an optimal post-event

reanalysis to rank diverse algorithms. This paper will show the capability of the skill score at

highlighting algorithms which are efficient at detecting storms with higher severe potential, as

well as those that closely resemble human-perceived storms through a comparison with manually-

created user datasets. The novel methodology will be useful in improving systems which rely on

such algorithms, for both operational and research purposes focusing on severe storm detection.

1. Introduction

Automated storm identification and tracking with remote sensing tools such as radar and satellite

imagery has long been used in operations and research; the automated output from storm tracking

algorithms provides guidance to National Weather Service forecasters about storm evolution traits

like intensity, growth/decay, and motion trends, while also providing opportunities for data mining

(e.g., Wilson et al. 1998; Lakshmanan and Smith 2009; Karstens et al. 2015, 2018). Its usefulness

in nowcasting applications has resulted in increased attention in the research-to-operations com-

munity, such as the Probabilistic Hazard Information framework (PHI; Karstens et al. 2015), as a

means of bridging the gap between watch and warning issuance. However, there does not exist a

standard storm identification and tracking algorithm within the meteorological community; rather,

a plethora of viable methods have been proposed in past literature and implemented operationally.

Because each algorithm poses its own set of advantages and disadvantages, a method of quantifica-

tion of performances between individual storm identification and tracking algorithms is necessary

to identify key differences and understand how those differences relate to performance.

For storm identification and tracking algorithms, many different methodologies exist in how to

determine the areal extent of a storm and how to track that storm over time. One of the first published

storm identification and tracking algorithms called the Thunderstorm Identification, Tracking, and

Nowcasting (TITAN) algorithm uses a single reflectivity threshold for storm identification (Dixon

and Wiener 1993). Improvements to the TITAN algorithm were made by including an option for a

dual-threshold, adjusting more optimally for mergers and splits, and estimating motion (Han et al.
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2009) using the overlapping method (Moseley et al. 2013). Similarly, the Storm Cell Identification

and Tracking (SCIT) algorithm — widely used in operations — employs the use of a reflectivity

threshold. However, instead of a single reflectivity threshold, it loops through several reflectivity

thresholds along radials to determineWSR-88D gates whose reflectivity values exceed that specific

threshold (Johnson et al. 1998). These radial segments are then combined for each elevation to

create 2D features for each reflectivity threshold which are then combined with other vertically

contiguous features through multiple elevations to create a 3D snapshot of storm identification.

However, SCIT produces only a centroid of the stormobject and does not output a contour signifying

the storm object bounds as TITAN does.

Because SCIT and TITAN are designed to be used in real-time operations, their workflow

operates only with volumetric single-radar reflectivity scans. In contrast, the segmotion algorithm

(w2segmotiondevll) within the Warning Decision Support System–Integrated Information suite

(WDSS-II; Lakshmanan et al. 2007) uses multi-radar multi-sensor (MRMS) data (which is gridded

onto a latitude-longitude-altitude grid) as input for storm identification; this algorithm employs an

enhanced-watershed image segmentation rather than a predefined reflectivity threshold for storm

identification (Lakshmanan et al. 2003, 2009). Beyond reflectivity-based algorithms, other tracking

algorithms have been developed that use satellite variables (Schmetz et al. 1993; Raut et al. 2008;

Kishtawal et al. 2009; Goswami and Bhandari 2012) or simulatedmeteorological data (Steiner et al.

1995; Raut et al. 2008; Heus and Seifert 2013). Furthermore, a more recent tracking algorithm

called TINT Is Not TITAN (TINT) uses a tracking methodology which does not require the use of

any physical storm traits (e.g., reflectivity) as part of the workflow (Raut et al. 2021).

A larger number of options arise when discussing the methodology of association of storms from

one time step to the next. Most tracking algorithms use the cross-correlation (CC)method, centroid-

based tracking, or the overlapping method. CC tracking attempts to match up two consecutive

images (typically 2D reflectivity data) to obtain an accurate motion vector (Leese et al. 1971).

Algorithms that use CC tracking (e.g., Tuttle and Foote 1990; Li et al. 1995) have the advantage

of being able to track in stratiform (non-convective) precipitation — additionally, the CC method

efficiently calculates the mean shift in images and thus can be used as a good first guess of mean

motion (Schmetz et al. 1993; Kishtawal et al. 2009; Raut et al. 2021) as early tracking of storms is

prone to larger errors (Johnson et al. 1998).
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However, individual storms cannot be tracked purely using the CC method since it correlates

entire images. Centroid-based tracking (e.g., SCIT or TITAN) calculates the center of the object

based on the defined storm identification. Then, the algorithm attempts to match up storms from

time C=−1 to C= based on the forecasted centroid position using some method of optimization — for

example, TITANuses combinatorial optimization to find the shortest tracks using the given centroid

positions. While this method bodes well for severe storm tracking with more intense storm cores,

a disadvantage is potentially obtaining highly variable storm motion vectors as centroid location

is dependent on storm shape, size, and strength, all of which can vary rapidly from one time

step to the next. Increased stability in centroid-based tracking can be made using an “offline"

approach in which only archived cases can be used. While “offline" algorithms such as the

Thunderstorm Observation by Radar (ThOR) (Houston et al. 2015) have the obvious disadvantage

of being operationally purposeless, the ability to use potential future positions to cluster objects

into an identified track can improve accuracy and makes these algorithms useful for research-

focused studies aiming to analyze past events. Lastly, as somewhat of a hybrid approach between

centroid-based and CC tracking, tracking within segmotion correlates the current identified object

backwards with the previous radar image using K-means clustering.

Thus, with many options for both storm identification and tracking, it is natural to attempt to

develop a skill score to objectively compare various tracking algorithms. However, past studies

have warned against developing such a “one-size-fits-all" skill score approach due to the inability

of the skill score to adapt to different situations and user end goals (Lakshmanan and Smith 2010).

While this sentiment is valid, it is possible to develop a skill score with the goal of extracting

tracking algorithms that are optimized towards a specific use in mind. Specifically, this study

aims to outline a skill score that will rank algorithms based on the ability to efficiently detect

storms that are severe or have increased severe potential, i.e., high-scoring algorithms should

not miss detection of longer-track severe storms while also minimizing false detection of weaker

storms that are shorter-lived (less than ∼15 min). The goal of extracting such algorithms is that

these tracking algorithms are favorable to use in situations where potential severe objects are the

main focus, i.e., within the PHI framework or within busy operational situations where forecaster

burden could be reduced by objectively identifying only storms that have higher severe potential.

Additionally, research focused on severe storms through datamining (e.g., obtaining storm statistics
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for climatologies) would benefit from tracking algorithms which are not prone to over-detection of

weak, non-severe storms.

Specifically, the skill score quantifies the abilities of the algorithms to: 1) continuously identify

objects, 2) correctly associate those objects between time steps, and 3) maintain consistency of the

track and object geometry. Lakshmanan and Smith (2010) attempted to isolate characteristics that

differentiate “good" versus “poor" tracking algorithms using specific parameters and allows the

user to interpret the ranking of the tracking algorithms based on what the user deems important

for the end goal of the tracking algorithm. Because this study defines the end goal of the tracking

algorithm (optimized for severe storm detection), it is possible to modify and integrate parameters

from Lakshmanan and Smith (2010) into one skill score.

This paper proposes an objective method to intercompare and rank the performance of a wide-

variety of automated storm identification and tracking algorithms through a carefully-designed

skill score formula. The skill score has two main parts: 1) quantification of three important

characteristics of the track geometry and object shapes motivated from Lakshmanan and Smith

(2010) and 2) comparison of the algorithm results to a post-event reanalysis which determines

optimal tracks given the original output of the algorithm (best track Lakshmanan et al. 2015).

2. Methodology

There are two main parts of the skill score: first, quantification of track and object characteristics

and second, a post-event reanalysis to determine optimal tracks. The quantification of object and

track characteristics is implemented through an adaptation of a method developed in Lakshmanan

and Smith (2010) using three characteristics that best represent the basic storm morphology: 1)

consistency of the shape and size of the objects, 2) object duration, and 3) linearity of the track.

The post-event reanalysis for the second part of the skill score will use best track as developed in

Lakshmanan et al. (2015). The combination of these four parameters yields an objective skill score

for determining comparative performances between algorithms and extracts information pertinent

to understanding the performance score of an algorithm. The parameters yield a skill score that is

calibrated to identify algorithms which are efficient at detecting objects associated with primarily

long-lived, potentially severe storms (hereafter, “object" refers to the contour determined by a
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particular tracking algorithm while a “storm" refers to a radar-detected echo whether or not it is

identified by a tracking algorithm).

a. Object Consistency

The first and perhaps most intuitive algorithm characteristic to be quantified is the consistency

of the identified objects’ geometry. Object consistency is often based upon the preservation of a

storm attribute. In Lakshmanan and Smith (2010), the standard deviation of maximum vertically

integrated liquid (VIL) within objects identified for a particular track greater than the median

duration was calculated and then averaged through all tracks. The method of Lakshmanan and

Smith (2010) deemed an object to have high consistency when the standard deviation of VIL is

low. However, in addition to the fact that maximum VIL through a storm’s lifetime can vary

significantly, maximum VIL inherently contains information from only one grid point within the

object. Therefore, to capture more information about the consistency of the entirety of the object,

we choose to calculate the absolute value percent change of the object size from one time step to

the next, which is mentioned as a potential consistency attribute in Lakshmanan and Smith (2010).

The average absolute value percent change in area for a track is calculated by

Δ�A40(%) =
∑#−1
8 |�8+1− �8 |/�8

# −1 (1)

where �8 is the area of the object at the iCℎ time step and N is the number of points for that track.

Percent change in area is used over total change in area since algorithms whose objects tend to be

larger would be penalized more for the same percentage growth — thus, total change was found to

inherently score smaller-object-algorithms as better performing (not shown). This equation is an

improvement from Lakshmanan and Smith (2010) for two reasons. First, the object size inherently

contains information about the variability of the entire object which is previously not taken into

account when using VIL. This ties into the second improvement in that while a storm attribute is

expected to change rather drastically through its lifetime (especially for longer-lived storms), unlike

standard deviation, this equation only correlates two consecutive time steps such that changes in

storm attributes should be much smaller. Therefore, if a large absolute value percent change in area

occurs, this can be attributed to object identification inconsistencies rather than storm evolution.
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b. Duration

The second algorithm characteristic to quantify is the duration of the objects. In general, if

the results for a particular algorithm contain higher durations, this implies that the algorithm was

skilled in capturing longer-lived storms and was less susceptible to broken tracks. Lakshmanan

and Smith (2010) utilized the median duration of all the identified objects as a way to quantify the

duration; the median was chosen such that outliers of either very short and/or long tracks would

not skew the data one way or another. However, in order to create separation between algorithms,

very short-lived objects (15 min or less) and very long-lived objects (2 h or more) should weigh

negatively and positively on the overall skill score, respectively. For example, if two algorithms

had the same exact results except that the first algorithm correctly identified one long track and the

second algorithm split the track in two, the mean duration would then rank the first algorithm above

the second algorithm whereas the median would likely rank them equally. Thus, we modified the

methodology from Lakshmanan and Smith (2010) to use the mean duration of all of the identified

objects in order to quantify the second algorithm characteristic used in our skill score.

c. Linearity

The last algorithm characteristic to quantify is the linearity of the tracks with higher linearity

correlating to better algorithm performance. The linearity of the track implicitly contains important

information about the performance of object identification. First, a track with high linearity

indicates that the object is not shifting around from one part of a storm to another — when a storm

has a larger area of higher reflectivities, a poor algorithm may be prone to capturing only a portion

of the storm at one time step and then jumping to another part of the storm at the subsequent time

step, which would lead to a low linearity. A relevant example could be in an MCS case where an

algorithm may capture a larger part of the line then jump to focus on an embedded core or vice

versa, leading to an inconsistent track and low linearity.

In order to quantify the linearity, the root mean square error (RMSE) of each track within a

particular algorithm is calculated, with RMSE simply defined as

'"(� =

√∑#
8=1 38

#
(2)
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where 38 is the distance between the object point and the best-fit line for that particular track and

N is the number of points for that track — note that the “object point" is simply the unweighted

centroid of the object. The RMSEs are calculated for all the tracks longer than the mean duration

for that particular case, and then averaged to acquire an overall mean RMSE for each algorithm.

Only the tracks longer than the mean duration are used to prevent calculating RMSE for very

short tracks which typically influence RMSE to be much lower but do not have enough points to

be statistically meaningful. RMSE calculations were not found to be significantly influenced by

choice of reflectivity-weighted versus non-weighted centroids — in fact, RMSE performance was

calculated to be slightly higher for reflectivity-weighted centroids. Thus, we are confident that

using non-weighted centroids is sufficient and use of a weighted centroid would not improve upon

the skill score.

d. Best Track Optimization

In addition to assessing properties of the individual tracks, it is also necessary to know how the

algorithms perform compared to an optimal analysis. The most accurate optimal analysis would be

one done by hand. However, hand analyses are extremely tedious and time-consuming. Because the

objective of the skill score is to construct a way to quickly compare different tracking algorithms for

a multitude of cases, including subsets of storm modes and environments, requiring the existence

of a hand analysis to compare the tracking algorithm results for each case would detract from the

purpose of the skill score. Therefore, we opt to use an automated method to extract the optimal

tracks post-event, developed by Lakshmanan et al. (2015).

Lakshmanan et al. (2015) utilizes the initial object tracks outputted by an algorithm and computes

the Theil-Sen (TS) slope for each uniquely identified track. It then analyzes each identified storm

point using its centroid and compares its distance to all calculated TS slopes; if, for a storm object,

there is a closer TS line than the one it is originally associated with, the object is then grouped with

the track that has the closer TS line (Fig. 1a; see also Fig. 2 in Lakshmanan et al. 2015). Identical

trajectories are combined, and new tracks with fewer than three time steps are either moved to the

nearest trajectory within a specified spatiotemporal bounding box or removed if one does not exist

(for more details, see Lakshmanan et al. 2015). Fig. 1b demonstrates the association of a candidate

point to the nearest trajectory which, in the example, better aligns with that of hand analyses. A
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couple modifications to the original best track steps are made here for better performance including:

1) defining the distance bounding box to be 0.1◦ latitude / longitude for which an object can be

associated with a new track, and 2) automatically re-associating tracks with only one time step to

the nearest track within the bounding box prior to pruning.

Fig. 1. Example of best track optimization using a Theil-Sen fit selected from the 7 June 2020 case: a)

demonstrating a candidate point (yellow dot) being considered for inclusion in existing cluster / track (gray dots)

and b) optimized track (black line / dots) with candidate point determined to be re-associated overlaid on hand

analyses (red, orange, green, and blue lines; see Section 2f). Both the optimized track and the user tracks are valid

from 232838 to 000637 UTC, with the white contour (dot) representative of the storm object outline (centroid)

overlaid onto merged reflectivity QC composite at 234442 UTC.

After the best track reanalysis is complete, it is compared with the original algorithm output and

scored based on a novel point-system:

• +1 points if the original object exists in the best track reanalysis and is correctly associated

with the best track trajectory

• +0.5 points if the original object exists in the best track reanalysis but is re-associated to a

different best track trajectory

• +0 points if the original object does not exist in the best track reanalysis (i.e., it is dropped)

The total points are then divided by the number of original identified storm objects such that

a “perfect" algorithm in which best track reanalysis matches that of the original analysis would

receive a score of one. It is important to understand that best track is only intended to improve the
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tracking of the original algorithm by fixing track breaks and pruning false detection of short tracks.

While best track is intended to better align with a manual hand analysis, it is not in and of itself

a tracking algorithm and cannot be used as “truth" due to the limitation that it cannot detect any

new storms that the algorithm originally missed. Therefore, although best track outputs improved

tracking results, it is limited by the original algorithm detection— nevertheless, best track is useful

in that it allows for quantification of how well the algorithm performed in regards to track breaks as

well as “false" detection of weaker short-lived storms. The quantification of these two properties

through best track is unique from Lakshmanan and Smith (2010) and is important when discussing

algorithms that are optimized in severe storm detection, as track breaks and false detections should

be minimized.

e. Scoring System

All four of these parameters — object consistency, duration, linearity, and best track — are then

combined to create an overall skill score for each of the tracking algorithms examined. For the

first three characteristics, the algorithms are ranked from best to worst, i.e., from highest to lowest

duration, lowest to highest linearity error, and lowest to highest percent change in area. For each

of the three characteristics, the algorithms are then normalized in score from one to zero, with

one being the best performing and zero being the worst. Thus, if an algorithm scored the best

comparatively in all three categories, it would receive a one for object consistency, duration, and

linearity, receiving a total score of three. Lastly, the best track reanalysis scores are also normalized

and added to the three characteristic scores, giving a maximum score of four; or

(:8;; (2>A4 ==>A<(0A40 ?0A0<4C4A) +=>A<(3DA0C8>= ?0A0<4C4A)+

=>A<(;8=40A8CH ?0A0<4C4A) +=>A<(14BC CA02: ?0A0<4C4A)
(3)

where =>A<(G) means that the score for that particular parameter, G, is normalized to one by

the maximum score across all tracking algorithms. Because the scores are normalized to the set

of algorithms, the final skill scores are always relative to the algorithms being inputted into the

skill score and will change if different algorithms are compared. While an absolute skill score was

considered, this would require the establishment of an absolute metric of each of the parameters
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which is left to the user’s discretion if desired. It is argued that the use of relative versus absolute

scores would not vary results much — thus, we opt to use a algorithm-based normalized approach

in order to prevent the need to establish set baselines for each parameter.

f. User Datasets

Though this skill score consists of four appropriate parameters that work to obtain the most

efficient severe storm tracking and identification algorithms, we verify proper calibration of the

skill score through the use of manually-created user datasets, discussed further in Section 3c.

Proper calibration would entail user datasets scoring highly within the skill score, indicating

similarity between high-scoring algorithms and hand analyses. The user datasets are created

through a dynamic web-based mapping tool, where an individual can manually draw storm objects

and track them from time step to time step with additional object evolution options such as

merging and splitting (see Steeves et al. (2021) for more details). In addition to object control,

the user also has access to multiple MRMS fields (reflectivity at -10◦C, merged reflectivity QC

composite, reflectivity at lowest altitude, etc.) which can be used jointly to aid in decision-making.

Visualization of tracking for a particular storm for four different users is shown in Fig. 1b,

illustrating that each user, though similar, have unique interpretations of storm tracking.

g. Limitations

While the skill score is undoubtedly a useful tool, Lakshmanan and Smith (2010) actually warns

against the creation of such a score due to possible ambiguities in defining such a score across all

situations, so there are limitations that the user must be aware of. The first limitation is that the

parameters are being combined into a single skill score with equal weight. While assigning weights

to the individual parameters was considered, establishing set parameter weights, perhaps based on

the error corresponding to that particular parameter, would take a significant amount of trial-and-

error and is beyond the scope of this study. Additionally, the skill score is easily amendable to

a user’s end goal — for example, if a user wanted to prioritize determining algorithms with the

longest tracks, the weight for the duration parameter can be easily increased relative to the other

three parameters. A second limitation which has been briefly mentioned above is that the skill

score is calibrated to determine algorithms which are most efficient at identifying storms that have
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(or have already realized) severe potential — the skill score is not intended to be used in situations

where detection of stratiform precipitation is desired, or in situations where the user aims to track

all storms from first radar echo to decay (e.g., SCIT).

Thirdly, there is no definitive check within the skill score to determine whether an algorithm

is over-identifying or under-identifying the number of tracks. Therefore, if an algorithm was to

identify only the most intense, long-lived tracks, this algorithm would likely perform very well

within the skill score; it would not be penalized for missing weaker, but still robust storms which

may pose an eventual severe threat. Thus, subjective confirmation of the top-scoring algorithms

by observation is recommended. Reflectivity thresholds could be utilized for a rough object count.

For example, the total object count for an algorithm could be required to be less than the number

of storms which have a reflectivity greater than 35 dBZ indicative of deep convective initiation

(preventing over-identification) but smaller than the number of storms which have a reflectivity

greater than 50 dBZ (preventing under-identification). However, the addition of such a check

is left for future work. While the number of objects could also be assessed manually similar

to Lakshmanan and Smith (2010), this would be time-prohibitive and would detract from the

efficiency of the skill score. Lastly, there may be some concern in the way that the skill score is

defined that algorithms that explicitly consider size or duration through a cost function (e.g., Morel

et al. 1997; Lakshmanan et al. 2009; Han et al. 2009) will hold an unfair advantage against those

that do not — it is argued, however, that these algorithms should be appropriately rewarded for

these attributes inherent to their design and that these strengths in the algorithm should be reflected

within the overall skill score.

Despite the limitations presented, the skill score serves an important purpose in that it has the

ability to easily and objectively rank an abundance of algorithms and output those that are efficient

in severe storm detection. While the method from Lakshmanan and Smith (2010) of assessing

each parameter individually provides insights into strengths and weaknesses of each algorithm, it

is impractical when assessing a large number of algorithms as it would be difficult for a human to

discern which algorithm(s) perform the best overall (in Lakshmanan and Smith (2010), only six

algorithms were compared). To illustrate this point, we have plotted each parameter as defined in

Lakshmanan and Smith (2010) for 55 algorithms (to be detailed in Section 3a) including four user

datasets for a single case (7 June 2020; Fig. 2) — however, for a better one-to-one comparison
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between the Lakshmanan and Smith (2010) and the skill score presented herein, we opt to use

normalized standard deviation of size rather than VIL for object consistency as size was suggested

as an alternative in Lakshmanan and Smith (2010). While Fig. 2 shows a good breakdown of

performance by parameter of the 55 algorithms, it is unfeasible to objectively rank the algorithms

shown just based on the parameter values; this becomes even more unfeasible when comparing

hundreds or potentially thousands of different tracking algorithms. Thus, an example workflow

could be as such: use the skill score defined here to narrow down many algorithms into the

top-performing ones, then assess those top-performing algorithms by each parameter to assess

trade-offs within those algorithms and choose one that is most optimal for user needs.

Fig. 2. Evaluation of tracking algorithms by parameter as described in Lakshmanan and Smith (2010) for the

7 June 2020 case: a) median duration of all tracks, b) normalized standard deviation of size for tracks longer

than the median duration, c) mean linearity error for tracks longer than the median duration, and d) total number

of identified objects. See Fig. 3 for nomenclature of tracking algorithms.
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3. Applications

a. Small-scale Modifications within a Base Tracking Algorithm

1) Experiment Setup

One application of the skill score is the ability to objectively, and quickly, differentiate per-

formance between small-scale modifications within the same underlying tracking algorithm. For

example, modifications to minimum size or reflectivity threshold results in similar, but unique, out-

puts. The skill score provides an objective way to rank performance between similar outputs. In this

study, the base “adjustable" algorithm that is subjected to small-scale modifications is segmotion,

an algorithm within the WDSS-II suite which uses K-means clustering and an enhanced-watershed

method to identify storm objects at multiple scales (Lakshmanan et al. 2009) — while segmotion

is used to demonstrate the capabilities of the skill score, this is not intended as a study for deter-

mining optimal segmotion settings. The segmotion algorithm consists of adjustable settings that

can be altered to output distinct storm object datasets for a given case. The primary settings are

tracking variable, data binning, pruner size, and smoothing filter. The segmotion algorithm also

outputs objects at multiple spatial scales — while it is possible to combine multiple scales into

one via a post-processing step with the intention of capturing processes outside of the storm core

(as in Cintineo et al. 2020), this option was deemed unnecessary as 1) the skill score is focused on

efficiency in severe storm detection and 2) segmotion is used simply as a proof-of-concept in how

the skill score operates.

Initial experiments of 576 different segmotion setting combinations at the “0Cℎ" and “1BC" spatial

scale were run to determine how the settings modified the output. Due to the impracticality of

showing all 576 settings throughout the study, this base understanding of setting behavior was then

used to narrow the 576 setting combinations down to 50 segmotion settings within segmotion that

performed acceptably. These 50 settings have variations in tracking variable, data binning, pruning

size, and smoothing filter — full description of modifiable settings within segmotion can be found

in Lakshmanan and Smith (2009); Lakshmanan et al. (2009); Lakshmanan and Smith (2010) and

Appendix A in Cintineo et al. (2020). These settings will be denoted as text numbered 01 to 50,

with the tracking variable specified prior. For example, R10_01 (MRC_41) would correspond to

the 1BC (41BC) unique setting combination which had a tracking variable of reflectivity at -10◦C
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(merged reflectivity QC composite). The reflectivity data are sourced from the reprocessed Multi-

Year Reanalysis of Remotely Sensed Storms project (Williams et al. 2021). This study evaluates

these 50 settings in addition to the current segmotion configuration that is implemented within

ProbSevere (hereafter denoted as “ProbSevere"; Cintineo et al. 2014, 2018, 2020) within the skill

score.

The algorithms are run through four separate cases— 7 June 2020 (Complex), 24 February 2011

(QLCS), 23 March 2011 (Multicell), and 24 May 2011 (Supercell) — and are objectively scored

based on the four skill score parameters detailed in Section 2. Each of the cases are restricted

spatially and temporally such that convection within the domain is selectively representative of the

convective system of interest or particular storm mode except for 7 June 2020 which is meant to be

a multi-mode event (Table 1); for instance, the temporal window for 24 May 2011 ends before the

supercells grow upscale to represent more QLCS organization. The 7 June 2020 case also contains

the user datasets, so the algorithms will be verified against the user datasets for this case.

Min Latitude (◦) Max Latitude (◦) Min Longitude (◦) Max Longitude (◦) Time (UTC) Mode

20200607 42.6 46.9 -102.1 -98.2 2200 - 0008 Complex

20110224 29.5 38.2 -97 -83.1 2100 - 0600 QLCS

20110323 34.3 41.5 -89.5 -74 2200 - 0200 Multicell

20110524 32 38.93 -101.77 -95.52 1900 - 2230 Supercell

Table 1. Spatial and temporal domain specifications for four cases, each representing a specific storm mode.

2) 7 June 2020 Results

The case chosen to demonstrate the skill score application in detail is from 7 June 2020 from

2200 UTC to 0008 UTC, with the domain restricted to northern Nebraska into North Dakota (Table

1). The storms produced nearly 200 severe weather reports, including 12 tornado reports, primarily

across central South Dakota into eastern North Dakota. Initial storms started as discrete supercells

which eventually grew upscale by ∼2300 UTC, characterized by clustered supercell organization.

Fig. 3 shows ProbSevere scores poorly relative to the top 50 settings and user datasets, indicating

that the skill score is successful in finding settings that perform better at identifying and tracking

storms for this particular case. Specifically, ProbSevere tends to break tracks and over-identify

stratiform precipitation regions, which are inconsistent, leading to an overall lower mean duration

than the better-performing settings. Objects within ProbSevere are also susceptible to abrupt shape
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changes between consecutive time steps, and thus, a larger mean size change. Both track and shape

inconsistencies also yield a relatively low best track score, as many short-lived objects within

ProbSevere are dropped in the post-event reanalysis.

Fig. 3. Skill score and its four parameters for the top 50 settings, ProbSevere, and user datasets from the 7

June 2020 case. R10 and MRC are abbreviations which correspond to settings that use reflectivity at -10◦C and

merged reflectivity QC composite as their tracking variable, respectively. The skill score is marked by a black

“X" with the value corresponding to the left y-axis. The four parameters — linearity error, mean percent size

change, best track, and mean duration — are given by the red, green, yellow, and blue dots and associated error

bars, respectively, with values indicated on the right y-axes. Error bars for linearity error and mean size change

are given by `±Uf/# , where ` is the mean linearity error / percent size change, the value of U comes from

statistical tables of a two-tailed Student’s t distribution, the standard deviation given by f, and # is the number

of tracks longer than the mean duration. The error bars for duration are given by the interquartile range.

Fig. 4 visualizes differences in performance between the highest-scoring setting (R10_13) and

ProbSevere for four times within the 7 June 2020 case. The first apparent difference between Prob-

Severe and R10_13 is the size of the objects; ProbSevere tends to capture more lower reflectivities

surrounding the core of a storm and also identifies multiple reflectivity maxima within one object

while R10_13 objects focus in on the core itself, with one reflectivity maxima (and updraft) being

reflected by one object (e.g., Fig. 4d,h). There are notable differences in maximum reflectiv-

ity distributions between ProbSevere and R10_13 objects, with R10_13 eliminating objects with

lower maximum reflectivity at -10◦C (Fig. 5a). This disparity becomes more significant when
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including objects for the entirety of CONUS during a 24-hour period (7 June 2020 at 1200 UTC

to 8 June 2020 at 1200 UTC, Fig. 5b); the maximum reflectivity distribution for ProbSevere has a

secondary maxima at reflectivity at -10◦C equal to 35 dBZ, indicating a tendency of ProbSevere to

over-identify stratiform precipitation or stormswhich have not undergone deep convective initiation

(35 dBZ, Roberts and Rutledge 2003;Mecikalski et al. 2008;Walker et al. 2012). These short-lived

tracks not only reduce the mean age of tracks for ProbSevere, but also reduce its best track score as

many of these tracks end up being dropped within the post-event reanalysis. Meanwhile, R10_13

successfully eliminates those weaker storms during this 24-hour period while still retaining storms

with maximum reflectivity at -10◦C and merged reflectivity QC composite greater than 50 dBZ

(Fig. 5b).

As a result of the tendency of ProbSevere to over-identify weaker storms and lower-reflectivity

stratiform regions, the mean duration of ProbSevere’s objects are lowered as these storms tend

to be shorter-lived and less steady-state (e.g., Fig. 4a,c,d). R10_13 significantly cuts down on

identified objects that last one or two time steps (300 or 600 s) compared to ProbSevere, within the

domain for the 2-h period (Fig. 5c) and within CONUS for the 24-h period (Fig. 5d). Shorter-lived

storms are unlikely to be pose a threat to life and property, and thus would typically not need to

be isolated for forecaster use in a system like PHI or uniquely monitored by forecasters for trends.

For the 2-h period within the restricted domain, R10_13 reduces the percentage of tracks that last

only one time step by nearly half and contains more tracks that last over 30 min, or 1800 s (Fig.

5c). Lastly, R10_13 focuses in on higher reflectivity regions which tend to be more consistent over

time; this leads to less variation in object area and centroid placements between consecutive time

steps resulting in higher track linearity, both of which weigh positively within the skill score.

3) Storm Mode

We can visualize changes in performance of each of the 50 settings plus ProbSevere by running the

settings through the skill score for the first three cases in Table 1, each of which represent a singular

storm mode (Fig. 6). It is apparent that the cases have drastically different performance based

on storm mode; for example, merged reflectivity QC composite and reflectivity at lowest altitude

settings perform equally to reflectivity at -10◦C settings for the supercell case (Fig.6a) but suffer

in performance for the QLCS case (Fig. 6b). This decline in performance is attributed to: 1) large
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Fig. 4. Comparison of storm object selections (black contours) from ProbSevere (a-d) and R10_13 (e-h)

overlaid onto merged reflectivity QC composite within the restricted temporal and spatial domain for the 7 June

2020 case for 220041, 222840, 230441, and 233839 UTC.

mean percent size changes and 2) worse best track performance comparative to reflectivity at -10◦C

settings, and 3) slightly shorter mean durations. This highlights that for optimal identification and

tracking, there may not necessarily be a “one-size-fits-all" algorithm; rather, different algorithms
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Fig. 5. Kernel Density Estimation (KDE) contour plots for the 7 June 2020 case for maximum reflectivity

distributions between reflectivity at -10◦� and merged reflectivity QC composite for a) restricted grid for

ProbSevere, R10_13, and polygon-averaged user datasets and b) CONUS-wide grid for ProbSevere and R10_13

— contours start at 0.0015 and are plotted every 0.001. Histograms quantifying percent of tracks by duration for

ProbSevere and R10_13 for the c) restricted grid and d) CONUS-wide grid.

may be more advantageous for certain situations than others, which the flexibility of the skill score

can quickly deduce.

The skill score rankings also yield notable behaviors for the settings overall based on storm

mode. Firstly, out of the three storm modes, tracks within the supercell case tend to have the

highest overall duration by a significant amount while QLCS tracks have the lowest durations;

multicell durations fall somewhere in the middle. This indicates that while the base algorithm is

performing sufficiently at capturing long supercell tracks, it tends to break tracks associated with

stronger segments within the QLCS as these are more transient and less steady-state compared to

supercells. This is also reflected in the large size errors especially with merged reflectivity QC
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Fig. 6. Similar to Fig. 3 but for a) 20110524 (supercell), b) 20110224 (QLCS), and c) 20110323 (multicell)

for the top 50 settings and ProbSevere.

composite QLCS objects; these settings are transitioning between capturing larger segments within

the QLCS and smaller embedded cores, leading to large percent mean size changes. Overall, the
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variation between the skill scores of the 51 settings is much smaller for the supercell case, as the

interpretation of a storm “object" is more apparent compared to a QLCS or multicell case where

different settings have more varying object interpretations.

b. Comparison between Tracking Algorithms

With the growing number of algorithms, some of which are operationally in-use, it is necessary to

have the ability to identify advantages and disadvantages between different base tracking algorithms.

As an example, this study tests the SCIT algorithm (Johnson et al. 1998) for the 24 May 2011

case. This case was chosen due to limitations of SCIT which is reliant on sufficient WSR-88D

radar coverage for optimal performance; because the supercell event occurred in close proximity

to KTLX, this case is ideal for a SCIT comparison. However, while SCIT uses full volume scans

coupled with multiple reflectivity thresholds to obtain an accurate storm centroid, it does not

calculate the boundaries of storm objects and therefore, storm size and mean size percent change

cannot be calculated. Thus, two different comparisons against SCIT are presented to showcase the

potential flexibility of the skill score to address user needs. In the first method, SCIT is assumed

to have a perfect size consistency, since one can potentially assume that the object is simply a

constant circle around the centroid which is representative of the storm object. In this method,

the skill score remains the same as previously defined with a maximum score of four (Fig. 7a).

However, because leaving the size consistency parameter within the skill score is not a like-for-like

comparison with other algorithms (which must interpret the object boundaries), the second method

eliminates the size parameter for all algorithms such that the maximum skill score becomes three

and all algorithms are scored based only on their age, linearity, and post-event reanalysis, the latter

two of which are dependent only on centroid placement (Fig. 7b).

Despite the different approaches, both methods highlight that SCIT does not perform well. In

fact, SCIT ranks 51BC out of 52 algorithms (including ProbSevere and SCIT) within the first method

and last per the second method due to its comparatively very low mean duration versus segmotion

settings. Investigating further, SCIT tends to over-identify weaker, unorganized storms which have

a higher likelihood of dissipation. However, this should not come as a surprise as SCIT’s intended

operational use is to identify all storms that have a potential of becoming organized —meanwhile,

the skill score developed herein is intended to favor algorithms which identify only storms that have
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Fig. 7. Similar to Fig. 3 for the top 50 settings, ProbSevere, and SCIT for 20110524 using a) normalized

mean percent size change of one for SCIT and b) eliminating the mean percent size change parameter giving a

maximum skill score of three.

a higher probability of posing a future severe weather threat. Therefore, it is reasonable to expect

that SCIT would perform poorly within the skill score, and its poor performance is actually a metric

that the skill score is correctly calibrated to penalize algorithms that over-detect weaker storms. It

is also worth noting that the parameter that SCIT scores very highly in is linearity error; because

SCIT uses numerous reflectivity thresholds to obtain what is essentially a reflectivity-weighted

centroid, the centroid placement along the track is less variable than the centroid calculated from

the segmotion settings, which are obtained from the object shape itself and can be highly variable.
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These subtle differences that the skill score detects can help identify strengths and weaknesses of

different base tracking algorithms.

c. Verification with User Datasets

In order to ensure that the skill score is calibrated correctly, we opt to use hand analyses via user

datasets to be scored against the 51 settings in Section 3a. To reiterate, it is expected that the user

datasets will score highly within the skill score; if so, this indicates that high-scoring algorithms

are more similar to storm objects that a human would interpret compared to those that rank lower.

Four user datasets are completed for 7 June 2020, which is a case that was specifically chosen

to represent a more complex event with evolving storm modes (supercells growing upscale into a

QLCS).

The user datasets scored highly as expected, with User 3 and 2 scoring 1BC and 2=3 overall,

respectively (Fig. 3). These datasets scored favorably because, in addition to longermean durations,

user datasets tracks have high linearity and a smaller mean size change as human perception of

a storm object does not vary drastically in between consecutive time steps (120 s). To better

consolidate the user datasets for comparison, a polygon-averaging technique is used; the four user

objects are superimposed at each time step, and for a particular grid point, if the number of users

that drew an object on that grid point is equal to or exceeds a subjectively-defined count, then that

grid point is deemed to be within a “polygon-averaged" object (Fig. 8). The maximum reflectivity

distribution for the users as an aggregate dataset (or ”Polygon-Averaged Users") is extracted to

assess with R10_13 and ProbSevere (Fig. 5a). The Polygon-Averaged Users distribution closely

resembles that of R10_13, which further confirms that 1) the top setting matches closely with that

of user datasets and 2) R10_13 is correctly eliminating objects with lower maximum reflectivity

at -10◦C. Thus, the performance of the user datasets combined with nearly identical reflectivity

distributions gives confidence that the skill score can distinguish high-scoring algorithms that are

similar to what a human would perceive.

4. Conclusions

While there is an increasing number of storm identification and tracking techniques, there exists

a lack of objective approaches to comparatively assess those differences in performance. Thus,
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Fig. 8. Schematic of a) four individual user-drawn objects with each linestyle representative of a different

user and b) gray-shaded contours illustrating overlapping grid points of user-drawn objects. A polygon-averaged

object using a count of >2 is outlined in red.

this study introduces an objective skill score which comparatively ranks algorithm performance.

Because building a one-size-fits-all skill score that works amongst all variations of situations and

user needs is too broad, the skill score designed herein is intended to identify tracking algorithms

that are efficient in severe storm detection. Specifically, the skill score is built as a means of

extracting algorithms that detect the highest percentage of severe (or potentially future severe)

storms while detecting the lowest percentage of those that are not. The development of such a skill

score could be beneficial both operationally (e.g., within the PHI framework) and within severe

storm research (e.g., for data mining severe storm statistics).

To quantify algorithm properties that encase efficient severe storm detection, the skill score

consists of two main parts — the first is quantification of the object characteristics modified from

Lakshmanan and Smith (2010) and the second part is a comparison to an optimal post-event

reanalysis using best track (Lakshmanan et al. 2015). Quantification of object characteristics are

further comprised of three parameters: 1) percent change of object size between consecutive time

steps, 2) mean duration of tracks, and 3) average linearity error of tracks longer than the mean

duration. Additionally, the novel best track score developed within the study aims to directly
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quantify the algorithm’s ability to avoid track breaks and false detection of weaker short-lived

storms with low severe potential.

Applications of the skill score are flexible to the user’s focus and are shown to be successful at

highlighting optimal components within a particular base tracking algorithm (e.g., segmotion) as

well as comparing different base algorithms (e.g., segmotion versus SCIT). Algorithms that score

highly are successfully shown to avoid detection of weaker storms which tend to be short-lived

and do not pose a future severe threat, be less prone to breaking of tracks, and are less variable

in terms of object size and shape. Additionally, algorithms which are geared towards identifying

stratiform precipitation or those that track all storms from first radar echo (SCIT) are shown to

score poorly. For further verification of skill score performance, reflectivity distributions of high-

scoring algorithms match closely with (also high-scoring) manually-drawn user datasets for the

7 June 2020 multi-mode case, indicating that the methodology is correctly calibrated to identify

algorithms which are comparable to what a human would perceive.

This study also highlights the effect stormmode has on algorithmperformance through analysis of

three various cases, each of which are spatially and temporally domained to represent a particular

storm mode (supercell, QLCS, and multicell). Through the use of the skill score, it is found

that there is not necessarily an optimal algorithm for all cases and storm modes. Rather, some

algorithms may be more advantageous than others in certain situations, and the skill score is able

to quickly deduce the appropriate algorithm for each case.

While this study mainly focuses on the methodology of the skill score and demonstrating the

use / flexibility of it through four cases, future work includes conducting a more comprehensive

study with additional cases and storm identification and tracking algorithms. This would allow

for a detailed investigation on the advantages and disadvantages of different techniques which

may have operational implications. Additionally, further work should be done using the polygon-

averaging technique to create a (potentially) improved ensemble output as well as explore uses for

the user datasets which provide invaluable verification. Last, improvements to the skill score itself,

including establishing set objective weights to the four parameters as well as defining an option for

an absolute normalization technique to provide an immutable score for each algorithm is left for

future work.
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